Summary

NEURIMP

Novel combination of biopolymers and manufacturing technologies for production of a peripheral nerve implant containing an internal aligned channels array.

Topic: NMP2013.2.2.1 Biomaterials for advanced therapies and medical devices in the neurological/neuromuscular cardiovascular fields.

Execution: January 1, 2014 –December 31, 2017.

EC funding: 3,5 M€.

Project Coordinator: Santos Merino

 

NeurimpLogo07

Introduction

Peripheral nerves are basic communication structures guiding motor and sensitive information from CNS to effector or receptor units. Severe nerve injuries include axon bundles section and Schawnn cells destruction, which results in loss of motion control and sensorial perception.

After the lesion, cells present in damaged nerves activate spontaneously self-regeneration programs that might facilitate further treatment. Nerve autograft is the "gold standard" surgical intervention that demands autologous tissue extraction and corresponding function loss.

Read more: Introduction

Industrial objectives

  • Develop advanced synthetic-natural biohybrid materials with improved biocompatibility and biodegradability (18 – 24 months), regenerative capacity (nerve gaps > 3cm) and mechanical properties (≈ 11.7 MPa) suitable for the generation of 3D micropatterned structures comprising with selective porosity and controlled degradation. Determine the optimal physical parameters required by biomimetical endoneural tubes to pave for an efficient regeneration of both sensory and motor axons. Scale – up biomaterial production to industrial levels

    Read more: Industrial objectives

Concept of the project

Post-traumatic peripheral nerve repair is one of the major challenges in restorative medicine and microsurgery. Primary causes of damage are traumatic accidents, tumour resection, iatrogenic side effects of surgery or repetitive compression (tunnel syndromes). At present, peripheral nerve injuries are cause of medical consultation in more than 1,000,000 patients per year in the United States and Europe, with more than 100,000 cases undergoing surgery [1]. Severe nerve injury has a devastating impact on patients' quality of life. Typical symptoms are sensory and motor function defects that could result in complete paralysis of an affected limb or development of intractable neuropathic pain. Despite the progress in understanding the pathophysiology of peripheral nervous system injury and regeneration, as well as advancements in microsurgical techniques, peripheral nerve injuries are still a major challenge for reconstructive surgeons.

Read more: Concept of the project